

Green Wave: Bike Signal Coordination

Presenter: Amy Do on behalf of Alexander Pok Lai Law Simone Tengattini Many thanks to Clark Lim, P. Eng

Objectives

- Reduce the number of times a cyclist comes to a stop along a corridor
- Increase bicycle ridership
- Improve cyclist safety
- Mitigate vehicle impact

Scope

- 9 intersections on Dunsmuir (Beatty-Hornby)
- Pre-timed signals
- One way roadway
- Two way separated bike path (North side)

Figure 1. Study Area Map

Methodology

- Graphical optimization of coordination
 - Maintain progression for vehicle
 - Increase link bandwidth for bicycles
 - Decrease total number of stops along the corridor
- AM/PM peak analysis (avg queue, avg delay) with synchro

Data collection – Bike volumes

- Traffic data was collected for both
 bicycle and pedestrian traffic.
- Completed at peak afternoon hours during October
- Factors:
 - Weather Cloudy
 - High Volumes
 - Imbalanced Values between intersections (Richard - Homer)

Data collection – Bike volumes

Bike Volume - East Bound

 ~4% increase in Cyclist volumes based off data from traffica.ca per year

This data is used for
the synchro analysis to
determine effects of
Crossing Bikes to traffic
flows.

2016 - Collected

2026 - Projected

Data collection – Bike speeds

- Time-stamps logged into micro SDcard
- Post-processing to compute bicycle speeds

Spot Speed Survey

- Conducted at midblock
- Arduino + 2 infrared sensors (similar to pneumatic tubes), 30 cm apart
- 15 mins collection
 (~40-50 bikes each
 segment)

Data collection – Bike speeds

Signal offset graphical optimization - AM Bike link Bandwidth

Signal offset graphical optimization - AM # stops at avg bike speed

Time

s

320

Cyclists impacts summary

1) Bicycle travel time

-AM peak •EB: -18.5s •WB: -25.2 -PM peak •EB: -14.0 s •WB: -30.1 s 2)Change of # stops at avg speed

AM peak
EB: -2 stops
WB: -1 stop
PM peak
EB: -2 stops
WB: -1 stop

Synchro traffic analysis

			AM		РМ	
	Intersection (at Dunsmuir)	Lane	Existing	Green Wave	Existing	Green Wave
			95 th Queue	95 th Queue	95 th Queue	95 th Queue
	Hornby	WBT	105.5	102.3	39.7	82.1
		NBT	40.4	40.4	40.3	40.3
	Howe	WBT	133.2	3.9	133.3	4.5
		SBT	40.8	41.0	58.9	58.9
	Granville	WBT	49.4	115	53.3	118
		SBT	11.1	11.1	17.8	17.8
	Seymour	WBT	71	47.1	67.2	25.7
		NBT	44.8	44.8	36.5	36.5
	Richards	WBT	22	10.7	7.3	0
		SBT	34.3	34.3	42.2	42.2
	Homer	WBT	2.9	2.0	13.6	5.3
		NBT	36.4	36.4	26.8	26.8
	Hamilton	WB	14.8	130.6	9.7	103.9
		NBT	6.8	6.8	8.8	8.8
		SBT	27.4	27.4	51.8	51.2
	Cambie	WB	13.7	7.2	11.1	26.9
		NBT	58.6	58.6	38.3	38.3
		SBT	105.5	105.5	84.1	84.3
		WB	158.6	158.6	90.9	90.9
	Beatty	NBT	39.5	39.5	61.4	61.4
		SBT	14.4	14.4	33.5	33.5

Advantages of Design

- Reduced waiting time for cyclists
- Increased safety (progression for ~40kph)
 - -for pedestrians
 - -for bicycles
- Increased cyclist incentive
- **Other Elements of Design**
 - Reduced vehicle speed

Limitations

- Only Dunsmuir St is considered no broader network consideration
- Optimization for average bike speed but high variability was measured (~4 kph)
- Impact minimized by not changing cycle lengths and phases length
- Try to minimize offset changes

Conclusions and last remarks

- Early steps of analysis: coordinating traffic lights for people biking is feasible.
- Further analysis of the entire network.
- Need to consider bicycle speed variation, interactions at heavy pedestrian intersections.

Thank You for Listening